

John Andrews & Nick Jelley

Lecture 11:

Energy demand in buildings, industry, and transport

© John Andrews and Nick Jelley, 2017. All rights reserved.

Global Energy demand and CO₂ emissions

Buildings, **industry** and **transport** account for

- ~ 87% of global energy demand,
- 28.5 GtCO₂ (c.f. total fossil fuel emissions of 32 GtCO₂)

CO₂ emissions

- projected to increase by 50-150% on baseline scenarios by 2050
- To limit global warming to 2 °C requires 80% cut in CO₂ emissions by 2050

Fig. 11.1 Percentage of final energy demand by sector (adapted from IPCC-AR5).

Note: Decarbonizing heat is as important as decarbonizing electricity

Areas for reducing energy consumption and CO₂ emissions

- Improve energy efficiency
- More conservation
- Change lifestyle (e.g. less reliance on cars)
- More recycling
- Low-carbon buildings (cement production is energy-intensive)
- **Retrofitting old buildings** (60% of existing homes will still be around in 2050)
- Imposing regulations on **fuel efficiency** of fossil-fuel powered vehicles
- **Decarbonizing transport** (electric vehicles)
- Generating heat from renewable electricity

How energy consumption in buildings and CO_2 emissions can be reduced

- Restricting heating and lighting to where and when it is needed; lowering indoor temperatures. Space heating and cooling, and water heating, accounts for 60% of global energy consumption in buildings.
- Using renewable energy resources e.g. solar thermal or geothermal energy for hot-water heating and using heat pumps driven by renewable electricity
- Improving **air-tightness** and **thermal insulation** (e.g. double-glazing, cavity insulation)
- Using **reflective services** in hot climates (= less air conditioning)
- Installing efficient appliances and cook-stoves
- Using LEDs

The IEA estimates that enhanced energy efficiency and electricity decarbonization could reduce CO2 emissions by $\sim 75\%$

Passive design houses can save up to 40% of the energy used in present designs.

Improved lighting and biomass cook-stoves

Comparison of light sources	luminosity Im W ⁻¹	efficiency %
Tungsten incandescent lamp	15	2
Compact fluorescent tube	70	10
LED	210	30

Lighting accounts for $\sim 20\%$ of electricity consumption in UK

Widespread adoption of LEDs could reduce UK electricity consumption by ~ 15%

If adopted globally, the reduction in CO_2 emissions would be ~ 2 Gt CO_2 (c.f. total = 34.5 Gt CO_2)

Biomass

3 billion people cook with wood. Most biomass stoves in use are **very inefficient** and **emit harmful smoke**. 4 million people die prematurely every year from smoke inhalation due to indoor cooking fires.

Switching to **improved biomass cook-stoves** would **save lives**, **energy and the environment**.

Thermal Mass

Thermal mass helps to keep buildings at a **comfortable temperature** in summer without wasting energy on air conditioning.

The essential idea is to use the **thermal capacity** of the building to keep the temperature inside between comfortable limits.

Thermal mass is useful in countries where there is a large temperature difference between day and night.

A thick concrete floor or outside wall can act as a **heat sink** during daytime and a **heat source** at night-time.

Fig. 11.2 Effect of thermal mass over a 24-hour period.

Buildings with low thermal mass **closely follow** the external temperature.

Buildings with high thermal mass are **less responsive** to the external temperature and the **peak temperature lags** behind that of the outside.

Quantifying heat losses and thermal insulation

Heat is lost from a building through the walls, windows, roof, doors and floor. Thermal insulation is required for all of them.

To quantify thermal insulation, we define the rate of heat transfer through a material, *Q*, as

$$Q = UA\Delta T = \frac{1}{R}A\Delta T$$

A = area

U = thermal conductance or *U*-value (W m⁻²K⁻¹) ΔT = difference in temperature across material

Thermal image of Passive House

U and *R* are related to the thermal conductivity *k* and thickness *d* of the material by

$$U = \frac{1}{R} = \frac{k}{d}$$

OXFORD UNIVERSITY PRESS

Comparison between old, new and passive house

Building element	Passive 1	House	Recent b	ouilding	Old bui	lding
Walls	0.15	25%	0.4	21%	1.5	30%
Roof	0.15	11%	0.3	7%	2.3	19%
Floor	0.12	8%	0.24	5%	0.8	7%
Window	0.8	22%	2.0	17%	4.8	15%
Door (unglazed)	1.5	8%	3	5%	3	2%
Air changes/hour	0.4	12%	1	36%	1.5	21%
Thermal bridging	0.04	14%	0.08	9%	0.15	6%
Total loss W $^{\circ}C^{-1}$	69		223		589	

Table 11.2 Typical *U*-values ($Wm^{-2}K^{-1}$) for building elements and percentage heat loss (HHLC)

All houses are detached, have the same footprint of 7m x 7m and ceiling heights of 2.5 m.

To calculate the **total heat loss over a month**, we need to know the average temperature difference between the inside and the outside of the house for the month.

This is given by the number of degree-days per month.

OXFORD UNIVERSITY PRESS

Degree-Days

Mitigation measures for buillings

Building improvement	Improve building envelope; passive design; control systems;
	daylighting
Carbon intensity	Fossil \rightarrow low-carbon electricity and heat; biofuels; solar thermal
Energy intensity	Improve appliance and systems efficiency; LEDs; heat pumps
Demand reduction	Part-space and part-time use; smart controls; lower temperatures

Space heating and cooling accounts for $\sim 60\%$ of global energy consumption in buildings. so

- Electrical resistance heating and incandescent light bulbs need to be phased out.
- New buildings should have low energy demand and use passive heating and cooling.
- Existing buildings should be **retrofitted with energy-saving technology**.

Direct emissions of CO₂ from Industry

Globally, the industry accounts for 28% of final energy use, with about **70% from fossil fuels**.

Production of cement, pulp and paper, aluminium, chemicals, iron and steel, account for ~ 75% of direct emissions of CO₂ from industry (=13.1 Gt in 2010).

Fig. 11.7 Direct emissions of CO₂ from industry in 2007(GICC2012).

Industrial plant ©zhaojiankang/istock
Decarbonizing industry is difficult:

- Investment timescales for replacing equipment are 20-40 years
- Many processes are energyintensive and involve heat from fossil-fuel combustion
- Reluctance to lose competitiveness
 OXFORD
 UNIVERSITY PRESS

For any given industry, the greenhouse gas (GHG) emissions per year, *G*, can be usefully expressed as a product

$$G = \frac{G}{E} \times \frac{E}{M} \times \frac{M}{P} \times P$$

where $\frac{G}{E}$ = carbon intensity
 $\frac{E}{M}$ = energy intensity
 $\frac{M}{P}$ = mass material per product (product efficiency)
 P = number of products

Hence, reducing the ratios $\frac{G}{E}$, $\frac{E}{M}$, $\frac{M}{P}$ reduces the emissions of GHGs.

Mitigation measures for industrial emissions

Energy efficiency	Process: energy and heat recovery
	General: motor and steam systems
Fuel switching	coal \rightarrow gas; wind or PV electricity; biomass; low-carbon produced $\rm H_2$
CCS	Costly and many varied sources
Life-cycle changes	waste reduction and reuse; recycling; less and low-C materials; extended use; retrofit and repair; sharing resources

Power-to-gas process: Use surplus renewable energy to produce gaseous fuels (e.g. hydrogen, methane, ammonia).

Electro-thermal processes: Develop specific electrical heating processes for low (< 100°C), medium (100-400°C), high (400-2000°C) industrial applications, e.g. electric furnaces, induction heating, microwave, laser, electron beam, plasma heating.

Reducing CO₂ emissions by industry

Carbon capture in industrial processes: Large steel plants could provide better economies of scale for CCS than for power plants. Ammonia plants produce almost pure stream of CO_2 , which only needs compressing.

Steel industry: In blast furnaces, ~ 80% of CO_2 emissions in steel production come from reducing iron using coke. Alternatives to coke are hydrogen (requires heat), electrolysis (electrowinning), biochar.

Cement industry: produces ~6% of global CO_2 emissions, 60% from converting limestone (CaCO₃) to lime (CaO), 40% from burning fossil fuels for heat. Using biomass/oxy-fired process with CCS could produce negative CO_2 emissions. Alternatives to CaCO₃ cement exist but not competitive.

Electrification of heat: the large-scale electrification of energy-intensive industries could become viable if and when renewable electricity becomes cheaper than fossil fuels.

Reducing CO₂ emissions by industry (continued)

Chemical industry: very diverse compared with cement and steel industries, but some large scale opportunities exist for fossil fuel-based materials and energy (see Table below). Also opportunities for improving heat and energy recovery.

Summary of industrial emissions reduction:

- Substantial investment needed to make significant impact.
- CCS could be more economic if renewable energy becomes cheaper than fossil fuels and if there are economies of scale.
- 80% reduction in emissions by 2050 looks very difficult to achieve. Andrews & Jelley: Energy Science, 3rd edition

Transport sector overview

Mitigation options

- Increasing use of public transport, more walking and cycling
- Increasing local manufacturing
- Avoiding unnecessary journeys
- More internet shopping

VERSITY PRESS

- Transport sector accounted for ~23% of energy-related CO₂ emissions in 2010
- Transport emissions projected to increase from 6.7 GtCO₂ in 2010 to 12 GtCO₂ in 2050
- No. of LDVs (light duty vehicles) expected to increase from 1 million to 2 million over next few decades.
 OXFOR

Carbon emissions by mode of transport

Fig. 11.12 Carbon emissions per tonne-kilometre and per passenger-kilometre.

- Policy changes could encourage the use for freight of high-speed rail and shipping rather than trucks and aircraft.
- Efficiency improvements and an increased number of occupants can reduce the energy intensity

ERSITY PRESS

Freiburg: Germany's green city

Philosophy: to make energy, transport & building as clean and efficient as possible

- Excellent public transport
- Renewable energy (especially solar PV)
- New buildings = low-carbon
- District heating via CHP
- Car sharing promoted
- Maximum speed = 20 mph or less

- Restricted number of through roads
- Extensive cycle paths
- Parking only on edge of district
- 70% of households have no car (57% of these gave up car on moving to Vauban)

Fig. 11.13 Freiburg mode of travel (2020 estimate).

Mitigation measures for transport

Transport mode, e.g. car, rail, plane	Reduce distances by urban design; promote public transport
Carbon intensity (CO ₂ MJ ⁻¹)	Fossil→low-C electricity + batteries; biofuels; low-C hydrogen
Energy intensity (MJ p-km ⁻¹ or t-km ⁻¹)	Improve efficiency; reduce weight and speed
Activity (p-km or t-km)	Fewer and shorter journeys; video conferencing; sharing journeys

There are developments in

- communications and controls of cars, with improvements in sensors and as a result in safety
- the testing of self-driving cars, and the increasing use of ride-sharing arrangements using smartphones.
- An benefit of electric vehicles (EVs) is that the batteries can be used to provide energy storage, which will become increasingly important as the percentage of renewable power increases.

Hybrid and electric vehicles

Hybrid electric vehicles (HEVs):

- combine internal combustion engine with electric motor and battery
- Use regenerative braking (braking energy stored in battery)

Up to 35% reduction in CO₂ emissions compared with conventional vehicles.

Plug-in hybrid electric vehicles (PHEVs) = bridge to pure EVs, based on statistics in Europe and USA that

Europe: 50% < 10 km, 80% < 25 km USA: 60% < 50 km, 80% < 100 km

Electric vehicles (EVs): between 2016 and 2021

- Battery costs expected to fall by 60%
- Driving range expected to increase by 70%, comparable with conventional cars

16% of cars in Norway are EVs

Electric Vehicles

Charging of EVs:

- Near workplace when PV electricity is available
- At small distributed PV farms

Global penetration:

Possibly 22% by 2025

Wholesale shift from fossil-fuel cars to electric cars depends on

- Future oil prices, and regulations and policies on carbon emissions
- Development of long-range (200 km) rechargeable batteries.
- Falling costs of batteries through 'learning'

Wikimedia Commons under creative commons license 2.0

Key Points

- Buildings, industry & transport account for ~ 87% of final energy demand
- Business-As-Usual scenario: emissions to increase by **50-150% by 2050**
- Limiting global warming to 2°C requires 80% cut in GHG emissions
- Need to improve heat insulation of buildings, efficiency of machines and processes, urban design, and reuse and recycle
- Opportunities exist for reducing emissions in industry, notably in the cement and steel industries
- CCS with hydrogen production may be an important source of decarbonised heat
- Switching to electric vehicles, using renewable energy for recharging, and deploying more heat pumps would make a significant difference
- Will require development of heat and electricity storage and effective policies
- Essential to significantly reduce and shift energy demand, and to decarbonize electricity and heat

